An Analysis of Biomolecular Force Fields for Simulations of Polyglutamine in Solution.
نویسندگان
چکیده
Polyglutamine (polyQ) peptides are a useful model system for biophysical studies of protein folding and aggregation, both for their intriguing aggregation properties and their own relevance to human disease. The genetic expansion of a polyQ tract triggers the formation of amyloid aggregates associated with nine neurodegenerative diseases. Several clearly identifiable and separable factors, notably the length of the polyQ tract, influence the mechanism of aggregation, its associated kinetics, and the ensemble of structures formed. Atomistic simulations are well positioned to answer open questions regarding the thermodynamics and kinetics of polyQ folding and aggregation. The additional, explicit representation of water permits deeper investigation of the role of solvent dynamics, and it permits a direct comparison of simulation results with infrared spectroscopy experiments. The generation of meaningful simulation results hinges on satisfying two essential criteria: achieving sufficient conformational sampling to draw statistically valid conclusions, and accurately reproducing the intermolecular forces that govern system structure and dynamics. In this work, we examine the ability of 12 biomolecular force fields to reproduce the properties of a simple, 30-residue polyQ peptide (Q30) in explicit water. In addition to secondary and tertiary structure, we consider generic structural properties of polymers that provide additional dimensions for analysis of the highly degenerate disordered states of the molecule. We find that the 12 force fields produce a wide range of predictions. We identify AMBER ff99SB, AMBER ff99SB*, and OPLS-AA/L to be most suitable for studies of polyQ folding and aggregation.
منابع مشابه
Using J-coupling constants for force field validation: application to hepta-alanine.
A computational solution to the protein folding problem is the holy grail of biomolecular simulation and of the corresponding force fields. The complexity of the systems used for folding simulations precludes a direct feedback between the simulations and the force fields, thus necessitating the study of simpler systems with sufficient experimental data to allow force field optimization and vali...
متن کاملAnalytic-Approximate Solution For An Integro- Differential Equation Arising In Oscillating Magnetic Fields Using Homotopy Analysis Method
In this paper, we give an analytical approximate solution for an integro- differential equation which describes the charged particle motion for certain configurations of oscillating magnetic fields is considered. The homotopy analysis method (HAM) is used for solving this equation. Several examples are given to reconfirm the efficiency of these algorithms. The results of applying this procedure...
متن کاملAn Elasticity Solution for Static Analysis of Functionally Graded Curved Beam Subjected to a Shear Force
In this paper, using 2-D theory of elasticity, a closed-form solution is presented for stressdistributions and displacements of a FG curved beam under shear force at its free end. The materialproperties are assumed to vary continuously through the radial direction based on a simple power lawmodel and Poisson’s ratio is supposed to be constant. In order to verify the solution, it is shown that a...
متن کاملEvaluating the Strength of Salt Bridges: A Comparison of Current Biomolecular Force Fields
Recent advances in computer hardware and software have made rigorous evaluation of current biomolecular force fields using microsecond-scale simulations possible. Force fields differ in their treatment of electrostatic interactions, including the formation of salt bridges in proteins. Here we conducted an extensive evaluation of salt bridge interactions in the latest AMBER, CHARMM, and OPLS for...
متن کاملHow accurately do current force fields predict experimental peptide conformations? An adiabatic free energy dynamics study.
The quality of classical biomolecular simulations is inevitably limited by two problems: the accuracy of the force field used and the comprehensiveness of configuration space sampling. In this work we tackle the sampling problem by carrying out driven adiabatic free energy dynamics to obtain converged free energy surfaces of dipeptides in the gas phase and in solution using selected dihedral an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 109 5 شماره
صفحات -
تاریخ انتشار 2015